
Chapter D SERIES OF FUNCTIONS

We have already run into series developments of functions several times :

the exponential, sine, cosine functions were expanded into power series;

Taylor's theorem provides a way to develop series expansions for suitable

functions; the exponential of a matrix gives us the only sure way to
"

solve"

a system of constant coefficient linear equations. We shall see in this chapter
that a general technique for solving a differential equation involves approxi
mation of the solution by series expansions.
We shall begin by formulating the definition of convergence of a series of

continuous functions and verifying the general criteria guaranteeing conver

gence. One of the most important of series expansions is that ofpower series.

We shall say that a function is analytic if it can be locally developed into a

power series. We shall finally verify the fundamental theorem of algebra
and complete the discussion of constant coefficient equations. We have

delayed this until now because the kind of analytic techniques involved in the

fundamental theorem are those which are most appropriately developed for

the class of analytic functions. Further techniques for operating with

power series will be explored, as well as the question of estimation of the error

in replacing the power series by a partial sum.

400



5.7 Convergence 401

5.1 Convergence

Definition 1. Let {/J be a sequence of continuous functions defined on a

subset X of R". The series formed of the {fk} is the sequence of partial sums

(Zfc=i /*} We say that the series converges if the sequence of these partial
sum converges (in the sense of Definition 19 of Chapter 2), and denote the

limitbyi?=iA.
Precisely then, /= Xfc=iA if. corresponding to every e > 0, there is an

JV such that

/(x) - ZA(x)
k=l

< e for all n > N and xe X

Since the limit of a uniformly convergent sequence of functions is continuous

(Theorem 2.14), we can assert that the sum of a convergent series of con

tinuous functions is continuous. Likewise, from the Cauchy criterion for

sequences, we obtain a corresponding criterion for the convergence of series.

Proposition 1. (Cauchy Criterion) Let {fk} be a sequence of continuous

functions. The series /k converges if and only if, to each e > 0 there cor

respond an N such that

X h < for all n, m > N

Proof. We must show that the sequence gn=^l=i fk satisfies the Cauchy

criterion. For a given e > 0, let N be as in the proposition. Then, for any x,

m > n :> N

\gm(x)
- g(x)\ I /*(x) < 2 /. <

Thus \\gm g\\ < e, so the proposition is proven.

Notice that the Cauchy criterion is guaranteed if the series of real numbers

X*=i ||/J converges (for !!?=+ 1 /J !*=,,+ 1 ll/J). This gives us a

powerful technique for verifying convergence of series.

Definition 2. Let {fk} be a sequence of continuous functions defined on a

set X. The series is said to converge absolutely if ^f=1 ||/J < oo.
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Of course, as remarked above, an absolutely convergent series is conver

gent. In the case of absolute convergence we can pose a comparison test,

just as for series of numbers.

Theorem 5.1. (Comparison Test) Let {fk} be a sequence of continuous

functions defined on a set X. Suppose there is a sequence {pk} of positive
numbers and an integer N > 0 such that

(0 \\fk\\<Pn fork>N

00

(ii) Z Pk <

k = l

Then /fc converges absolutely.

Proof. The verification is the same as that for number series (Theorem 2.3).

Examples

1. zk = VU z) uniformly and absolutely in {|z| < r} for any

r < 1. For \\zk\\ < rk in that domain, and

Zr" = Tzr
< oo

2. zk does not converge uniformly in {\z\ < 1}. In fact, the

series is not a Cauchy sequence of functions, because for every n,

\fk L,fk
k=l

= Z = 1

Thus, for = \, say, there is no JV such that ||"=,,/& II < i for all

m > n > N, in fact, not even for m = n + 1 .

3. e7 = X^=1 zk/k\ converges uniformly in any disk {|z| < R} with

R finite. Again, by comparison

Rk R"

*T\
and zr!<0
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,
cos nx

4-^
n

converges uniformly on the whole real line. For any x,

cos nx

^n2

Since 1/rc2 < oo the comparison test easily applies.

5. If {ak} is any sequence of numbers such that \ak\ < oo, then

f(z) == 1 ak zk is a continuous function on the closed unit disk.

The series converges uniformly since \\akzk\\ < \ak\.

Finally, for the purpose of availability, we record the obvious extensions

to series of the propositions concerning integration and differentiation of

sequences of functions.

Proposition 2.

(i) Let {/} be a sequence of continuous functions on the interval [_a,b~].

Let gn(x) = \xafn- V tne series offunctions/ converges, so does the series

if/.=r(/.) <">
n=l Ja 'a \n=l I

(ii) Let {/} be a sequence of continuously differentiable functions on the

interval [a, b~\. Let gn =fc. If the series of functions# converges, and

for some c, /(c) converges, then the series/ converges. The limit is

continuously differentiable and

(Z/,y =z/; (5-2)

Examples

6.

CO y

ln(l-x)=Z-r -1<*<1

k = l K
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This follows by integrating the geometric series (Example 1) term by
term

1!* 1 CO .*

j0T^~t=S'oLt
co tk

in(i-x)= y -

= y -

k=ok + l k^k

jfc+1 oo fk

,.

"
cos nx

fix) = -

k=i n\

is infinitely differentiable. For the differentiated series

" sin nx

is also convergent. By Proposition 2(ii) the sum is/'(x). Similarly,
the series (5.3) can be differentiated term by term, and gives

S n cos nx
"

n = 1 (fi - 1)!

which is again convergent.

8. We can develop a series expansion for arc tan x according to the

following observations. From the geometric series

1
",*

r~x=^xki- x k = o

we obtain by substituting -x2 for x

1 + x t=o

Integrate:

v2[+l

arctanx= (-1)'
n=o zk + 1
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EXERCISES

1. For what values of x do these series of functions converge absolutely:

(a) 22V (d) | (jr+18)"
n=0 n=0

N
cos nx

(b) 2 (e> 2 ""
n= 1 X n = 0

(c) | e (f ) | x<"2>
n=0 n = 0

2. In which domains of the complex plane do these series converge?

(a) | hz- (b) | -il (c) | -V
n = 0 n = 0 (Z)! n = 0

3. Which of these series can be differentiated or integrated on their

domain of convergence ?

(a) Exercise 1(a) (c) Exercise 1(d)

cos nx

(b) Exercise 1(b) (d) 2
n = 0 fl

4. Find the power series expansion for these functions :

1

(c) f e'1 dt
Jo

nm < y-

(a)
(l+x2)

(b)

PROBLEMS

1. (a) Find a power series expansion for sin x cos x.

(Hint : 2 sin x cos x = sin 2x.)

(b) Find power series expansions for sin2 x and cos2 x.

2. Prove Proposition 2.

3. Show that

lim 2 = log 2
-.-l n=l

Can you conclude

2 L_ii=i0g2?
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5.2 The Fundamental Theorem of Algebra

For the remainder of this chapter we restrict attention exclusively to

complex-valued functions of a complex variable. The simplest class of such

functions are the polynomial functions ; that is, functions of the form

P(z) = az" + a^iz"'1 + + axz + a0 ,

(where the at are complex numbers). We shall always assume a # 0; in

this case n is called the degree of P. It is a basic fact of mathematics that

every polynomial has a root; that is, there is a number c e C such that P(c) =

0. The proof of this fact consists in a systematic investigation of the analytic

properties of polynomials. First, we recall de Moivre's theorem.

Lemma. Every nonzero complex number has n distinct nth roots.

Proof. Let ce C, c ^ 0. For this purpose, the polar representation c = re'" is

most convenient. An nth root of c is a number w = pe'* such that p" = r and

em*
_

ei8. tnat jSj n^
_ q js an integral multiple of 2tt. Let

277 47T 2nk 2tt(u 1)
i
=

. <*2 = ,
. . .

, a*
=

,
. . .

, a_!
=

, a
= 2n

n n n n

Then a>i
= expO'aj), . . . , a>

= exp(z'a) are all distinct and have the property

(co)n = 1 . These are called the nth roots of unity. Now, if p = (r)1'" and <f> = 8In,
then (pe'*)n = reie = c. The numbers pe^ioi, ..., pe'^cu,, , ..., pe'*co are then all

distinct, and are all nth roots of c.

Now, we need two deeper facts depending on the continuity properties of

polynomials. The first is intuitively clear: that \P(z)\ gets arbitrarily large as
z-*co. The second is the crucial fact for the fundamental theorem: the

place where a polynomial has a minimum modulus must be a root.

Lemma. Let P(z) = anz" + + axz + a0 be apolynomial ofdegree n>0.

(i) lim \P(z)\ = oo, that is, given any M > 0 there is a K>0 such that
|z|->CO

|P(z)| > M whenever \z\ > K.

(ii) If P(z0) # 0, then z0 cannot be a minimum point for \P\; that is, there
are z close to z0 such that \P(z)\ < |P(z0)|.
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Proof.

(i) The point here is that the highest-degree term of P is the dominating term as

regards the behavior of P as z^ oo. For z ^ 0,

1^)1

If |z|>ii:>l, then |z|"-k>A: also for k <n, so

tf > !a|-i("j>l)
Let M > 0 be given, and choose

Z =max(l,2M|a|-1,2|fl|-1 (2 Mj\

Then, for \z\>K,

_l "v ak

>\a\[l )>-2M

Thus

\P(z)\^\z\"-i\an\>.K-i\a\>M

(ii) Suppose now that P(z0) ^0. Let

Q(z) =(P(z0)Y1P(z + z0)

Then G is also a polynomial, G(0)
= 1, and we must show that 0 is not a minimum

point for Q. Let

Q(z) = 1 + 2 * z* = ! + zm(am + z#(z^

where m is chosen as the least positive integer k for which ak # 0, and g(z) =

2s=m+i a*z"-(",+1). ^ is a polynomial and is thus continuous (and that is all we

need to know about g). Here again we want to use the fact that for small z, zm

dominates zm
+ *

,
so Q is very close to the polynomial 1 + zmam which has no minimum

modulus at 0 (choose z so that zm
= -rjam with r < 1).

In our case, we choose an mth
root of -a1 ; call it z, and consider the function
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Q(rz0) of a real variable r. We have

Q(rz0) = l+rm(-l+rh(r))

where h(r) = a^girzo) is a continuous complex-valued function. Thus

\Q(rzo)\<\l-n+r+1\h(r)\

Now limrrt(r) =0, so we can choose r0 < 1 small enough so that \r0h(r0)\ <i.
r-.0

Then

I Q(rz0) I <, 1 -

r0m + i-o-G) < 1 - ir0m < 1

which proves part (ii).

Theorem 5.2. (Fundamental Theorem ofAlgebra) Let P be a polynomial of

positive degree. There is a z0 e C such that P(z0) = 0.

Proof. Let P(0) = c0 . By part (i) of the lemma, there is a K> 0 such that for

\z\>K, \P(z)\>\c0\. Now A={zeC; |z| <K} is compact, so \P\ attains a

minimum value on A, say at z0 . But then z0 is a minimum point for all of C. For,
since OeA, \P(z0)\ < |P(0)| = c0 ,

and for z A, |P(z)| > c0 > |P(z0)|. Thus, even

for z A, we have |P(z0) | :< IP(z) | . But then, by part (ii), there is no alternative : we

must have P(z0) = 0.

Factorization Theory

We should recall that if c is a zero of the polynomial P, then z -

c factors P

(this is proven below in Theorem 5.3). Thus P(z) = (z
-

c)Q(z) and Q has

degree 1 less than that of P. If deg Q > 0, Q has a zero c', which is also a

zero ofP. Further, Q(z) = (z -

c')2'(z) and we can repeat this argument in

order to find exactly deg P zeros of P. This is the factorization theorem of

algebra.

Theorem 5.3. (Factorization Theorem) Let P be a polynomial of degree
n > 0. There are complex numbers a #0, z1; . . .

, z such that

P(z) = a(z -

zi) (z -

z)

Proof. The proof is by induction on n. If n =1 the situation is simple:

P(z) = OiZ + a0
=
ai I z I 1 )
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(since ai ^ 0). Now we consider the case of general degree n, assuming the corollary

for polynomials of degree n 1. By the theorem, there is a point c such that

P(c) = 0. Then

P(z) = P(z)
- P(c) = 2 *(z" - c*) = 2 *(* - <o ( zW-1 "J )

n-l/ n \

The factor on the right is a polynomial of degree n 1, so the induction assumption

applies: it can be written as a(z Zi) (z z_i) for suitable a^O, zu ..., z-i.

Thus, writing c = z ,
we obtain

P(z)=a(z-zi)---(z-z) (5-4)

This factorization is clearly unique, except for the order of the z;'s: a is the

leading coefficient of P and {zu . . .
, z} are the roots of P. Of course,

Zjl, . . .

, z need not be distinct; let ru . . .

, rs be the set of distinct roots. If

we let m,. be the number of occurrences of
the root r{ in the list {zu ..., zj,

mt is called the multiplicity of the root r{ . We can rewrite (5.4) as

P(z) = a(z - rt)mi (z - rs)m (5.5)

and clearly mt + + ms
=

n, the degree of P.

Before concluding this section we should remark on the factorization of

real polynomials. Real polynomials need not have real roots (viz., z2 + 1

= 0), but their complex roots come in conjugate pairs.
Let P(z) = az" -\

+ axz + a0 be a real polynomial. If P(r) = 0, then

P(f) = ani?)n +---+a1r + a0=(anr"+--- + a1z + a0)~ = PirY = 0

so r is also a root of P. Since

(z
- r)(z -r) = z2-(r + r)z + rr = z2-2 Re(r)z + \r\2

the polynomial has real coefficients. Thus, if we rearrange the roots of P

into the real roots ru ...,rk and the conjugate pairs rk + l, rk+u . . .

, r, , r, we

can rewrite the factorization (5.5) into a product of linear and quadratic

real polynomials.

P(z) = a(z
- rj"1 (z

- rk)m\z2 - 2 Rfi(rt+1)z + k+il2)
' '

(z2-2Re(rt)z + |rr|2)
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PROBLEMS

4. Let wi, ...,co be the n nth roots of unity. Show that they are

arranged at n equidistant points around the unit circle. Show that the sets

{cui, .
.., oi}, {a>i, oil2, . .

., oj'c1} are the same, if u>, is the nearest such

point to 1.

5. Let a>u . . .
, w be the nth roots of unity. Choose k so that kn 2 is

divisible by 4. Show that ikoju ..., ikwn are the nth roots of 1.

6. Show that : (a) deg PQ = deg P + deg Q.

(b) deg(P + Q) = max(deg P, deg Q) if deg P # deg Q.

(c) When is the equation in (b) not true?

7. Given two polynomials P, Q show that there is a polynomial R which

factors both P, Q and is factored by any polynomial which factors both

P, Q. R is called the greatest common divisor of P and Q.

8. Show that a real polynomial of odd degree has a real root.

9. Prove that the polynomial 1 + zma (m > 0) has no minimum modulus

at z = 0.

10. For P(z) = 2S'=o az" a polynomial, let

P'(z)= Znanz"'1
n= 1

(a) Verify that the transformation P^P' is linear and satisfies

(PQY=PQ' + P'Q

(by induction on deg P).

(P -*P' is a complex analog of differentiation)

(b) Prove that r is a multiple root of P if and only if P(r) = 0 and

P'(r) = 0.

(c) Define P" =(P')', P" = (P")', and so on. Then r is a root of P

of at least multiplicity m if and only if P(r) = P'(r) = = Pfm" *>(r) = 0.

5.3 Constant Coefficient Linear Differential Equations

Now that we know the factorization theorem for polynomials we can return

to complete the study of constant coefficient equations in one unknown func

tion. Let L be a constant coefficient differential operator of order k ; that is,

L is a mapping from functions to functions defined by

L(f) = fm + '. f{i) ^C (5-6)
i = 0



5.3 Constant Coefficient Linear Differential Equations 411

Corresponding to L is the polynomial

PLiX) = Xk + kZaiXi
> = o

called the characteristic polynomial of L. We recall the facts that we already
know about such differential operators.

Theorem 5.4. Let L be given by (5.6). The collection S(L) of solutions of
the equation Lf=0 is an n-dimensional vector space of infinitely differentiable

functions. If r is a root ofPL(X) = 0, then erx e S(L).

Now if all the roots of the characteristic polynomial are distinct, we have n

solutions of Lf = 0, and it is easily verified (Problem 1 1) that they are inde

pendent. Thus they span S(L). To examine the case of multiple roots,

we must examine more closely the relationship between the given differential

operator and its characteristic polynomial. If P is a polynomial, we will let

LP represent the corresponding operator; that is, for P(X) = j=0 a,-*', FP

is defined by

i = 0

Now, from what we already know about these differential equations we can

guess that the factorization of P will tell us all we want to know about LP .

In fact, we can factor the corresponding operator accordingly as the next

lemma shows.

Lemma 1. Lp+q
= LP + Lq\ LPq

= LpLq .

Proof. Of course, LPLQ is defined as the composition of operators : (LPLQ)(f) =

LP(LQ(f)). The first equation is obvious. The second takes a little work. We

will prove it by induction on the degree ofP. If deg P = 0, that is, P(x) = a0 ,
then

PQ=a0Q and LPQ(f) = a0LQ(f) =LP(LQ(f)\ for any sufficiently differentiable

function/ Now suppose the lemma is true for all polynomials of degree n. Let P

be a polynomial of degree n+ 1. If a is a root of P, we can write P(X) =

(X-a)S(X), where S is a polynomial of degree n. Thus, by hypothesis,

Lsq= LsLq. We have left only to verify the lemma for polynomials of degree 1.

That is, we must show that if R is a polynomial of degree 1 and T is any polynomial,

then Lrt=LrLt. For once this is verified, we take R(X) =X a, so that

P = RS. Then

Lpq =LRSq =LrLSq =LrLsLq =LrsLq =LpLq



412 5 Series ofFunctions

So, let R(X) =X-a, T(X) = 2?U b, X'. Then

RT(x) =f(b,- abl+1)X,+1 - abo
( = 0

Now we compute LRLT :

(m
\ in m

IW" =2(w,0)'-^i,r
( = o / ( = o i = o

m

= tibi-abi+l)f'^-ab0f
1 = 0

The lemma is proven.

It follows from the lemma that if Q is a factor of P, then any solution

of LPQ(f) = 0 is a solution ofLP(f) = 0. Now let P be a given polynomial.
We can, by the factorization theorem, write P as a product of first-order

factors.

P(X) = (X- aj"' ---(X- as)m with mt + + ms
= deg P

Because of Lemma 1 the solutions corresponding to the factors (X aj)1"1
are in S(LP). Thus we need to discover the solutions of the differential

equation LP(f) = 0, where P(X) = (X - c)m.

Consider, for example, the differential operator corresponding to (X c)2.
We know one solution: ecx; we find another by the technique of variation of

parameters. iX - c)2 = X2 2cX + c2. Test the operator on y = zecx.

y' = z'ecx + zcecx y" = z"ecx + 2z'cee* + zc2ecx

Then

/' - 2cy' + c2y = z"e" = 0 or z" = 0

Thus z = x, and the second solution is xecx. We can guess then that the

general situation is this.

Lemma 2. The solutions of LiX_c)m(f)
= 0 are spanned by e", xecx, ...,

xm~V*.

Proof. We have to show that the named functions are solutions. We do that

by induction. The case m = 1 is already known (by Lemma 1). Thus we may
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assume the lemma for a given value of m, and prove it for m + 1 . By Lemma 2, we

need only verify that Llx_c)m+i(xme") is zero. But this is

L(x-c->"<Lix-c,(xmeC') = La.c)m(mxm-'e" + cxme" - cxme")

=

La_c)m(mxm-1e")=0

by induction.

Theorem 5.5. Let p(X) = X" + j=o fl<-^f oe a polynomial with complex

coefficients. Let au ...,asbe the roots ofp(X) = 0 with multiplicities mt

ms, respectively. Then the space S(Lp) of solutions of the differential equation

lp(/)=/ + Ei/(0 = o

n-l

<
i = 0

is the linear span of the functions xJea,x, 0 <j < m{ .

EXERCISES

5. Solve these differential equations:

(a) y- 5y" + 8/
-

4y = 0, y(0) = 0, y'(0) = 0, y"(0) = 1 .

(b) y
-

-

y"
-

5/
-

3y = 0, y(0) = 1
, y'(0) = 2, v"(0) =

- 1 .

(c) y- 6y" + 12/ ~Sy=0, y(0) = 1, /(0) = 0, y"(0) = 1.

(d) y~- 3y" + 3/
-

y
= 0, y(0) = 3, /(0) = 2, y"(0) = 1 .

(e) yw + 2y" + ^
= 0, v(0) = 2, y'(0) = 2, v"(0) = 2, y '(0) = 2.

(f ) /4) + 4y('"> - 2y<
"> - I2y' + 9y = 0, y(0) = /(0) = y"(0) = 1,

^"(0)=0.

(g) y^
- 3/

"'
+ 2y = 0, y(0) = 0, y'(0) = y"(0) = y "(0) = 1 .

PROBLEMS

11. (a) Show that if ru . . .
, r are n distinct numbers, the matrix

1

r

r2'It

is nonsingular. (Hint: If the rows are dependent, we obtain a poly

nomial of degree n 1 with n distinct roots.)

(b) The functions exp(rix), ..
., exp(/x) are independent. (Hint:

If these functions were dependent, we would be able to prove that the

columns of the above matrix are dependent.)
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5.4 Solutions in Series

If now we are given a linear differential equation which is not homogeneous,

or has variable coefficients, we have a problem of a much different magnitude.

In general, such problems cannot be solved explicitly. Thus, we must seek

ways to obtain approximate solutions. This is one of the places where

series representations of functions are usable. The procedure of series

approximation has two aspects. First, we must establish the theoretical

validity of such a technique and, secondly (and this is essential from the

practical point of view), we need a technique for effectively computing the

error. In this section we shall describe this procedure, deferring these two

essential points (which turn out to be the same!) until Section 5.7.

First, an example. Suppose we want the function / such that

f"(x)+gl(x)f'(x)+g0(x)f(x) = 0 /(0) = a0 f'(0) = a,

where g0 and gx are defined in a neighborhood of 0. We shall assume

that they are sufficiently differentiable. Now our initial conditions

give us the first two terms of the Taylor expansion of/ at 0 :

f(x) = a0 + atx + higher-order terms (5.7)

Our technique will be based on the tacit assumption that the
"

higher-
order terms" are computable, and knowing enough of them will give
a usable approximation to the solution. Now, evaluating the differ

ential equation itself at 0 gives us the second-order term :

f"i0)+g1(0)f'(Q)+go(0)fi0) = 0

or

f"(0) = -(g1(0)a1 + go(0)ao)

so

f(x) = a0 + atx i(aog0(0) + fli#i(0))x2 + higher-order terms (5.8)

Differentiating the differential equation will give an identity express-
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ing/'" in terms of lower derivatives, so we may continue,

Fix) + g[ix)f'(x) + <h(x)/"(x) + g'0ix)f(x) + g0ix)f'(x) = 0

so

/'"(0) = -(^(0) + g0(0))ai
- g'0i0)ao + ^1(O)(01(O)a1 + 5o(0)ao)

= (gi(0)2 ~ 9'M ~

9oiO))at + (0o(O)fif!(O)
- g'oi0))a0

and so we have the third term of the Taylor series of/:

/(x) = a0 + ajx
- i(ao0o(O) + 0i0i(O))x2

+ iCGhW2 - 3i(0)
- fif0(0))ai+ 0o(O)<h(O)

- 3o(0))a]x3

+ higher-order terms

Example

9. Perhaps an explicit calculation is in order. We shall find an

approximate solution of:

/' + (x2 - 1)/ + xy
= x2 (5.9)

X0) = 0 y\0) = 2

The solution thus begins fix) = 2x + . f(0) is easy to calculate

by substituting the initial conditions into Equation (5.9):

f(x) = 2x + x2 +

Differentiating (5.9), we obtain

y" + 2x/ + (x2 - 1)/ + y + xy'
- 2x (5.10)

Evaluating at 0 we find /""(O) =/"(0) -/(0) = 2. Differentiating

(5.10) and evaluating at 0, we obtain /(4,(0) = 2; once again gives

/(5>(0) = - 10. Thus, to five terms the Taylor expansion of the

desired solution is

fix) = 2x + x2 + \x3 + h x4 - A x5 + higher-order terms

Admittedly this is not very glamorous, but
it is computable! The phrase
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"higher-order terms" represents the error between the fifth-degree poly
nomial exhibited above and the actual solution. That polynomial is com

pletely meaningless without some estimate on the error incurred. But our

method gives no hint as how to estimate. So, in the hope of being able to

give more form to the "higher-order terms," we will try a more brazen

approach : we begin by assuming that the desired solution is the sum of a

convergent power series (its
"

full Taylor expansion") and we try to find the

coefficients. If /(x) ==0 ax", then differentiating term by term we

obtain

/'(x)= fn^x"-1
n=l

/"(x)= n(-lK'x""2
n = 2

/w(x) = n(n
- 1) (n

- k + \)anx"-k
n = k

We make these substitutions into the given differential equations and

solve for the {a} by equating the coefficients offm.

Let us reconsider (5.9). Let f(x) = "=0 ax" be the desired

solution. The statement of the problem becomes

n = 2

n(n - lKx"-2 + (x2 - 1) ax"-x + ax"
- z2 = 0 (5.11)

1=2 n=l n=0

a0
= 0 ay

= 2

The coefficient of xk in the left-hand side of (5.11) is

ik + 2)(k + l)ak+2 + ik- 1K_! - (k + l)ak+1 + ak_x

Thus we have to solve these equations

a0 =0

ay
= 2 (initial conditions)

2a2~a1=2 ik = 0)

3.2a3 + a0
-

2a2 = 0 (k = 1)

4.3a4 + 2!
-

3a3 = 0 (k = 2)

n(n -

l)a + (n -

2)a_3 -in- l)a_! =0 (k - n - 2)
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We can solve, because each equation can be written in the form

in- lK-i -(n-2K_3
a =

nin
- 1)

n>2 (5.12)

However, we have an added advantage in that we can make a guess

at an estimate for the general term a . In fact, we assert

k, <
2"

[n/3]!
(5.13)

([x] = largest integer less than or equal to x). This is in fact true for

n = 0, 1, 2; we verify it in general by induction.

Kl<
(fi-l)|aM-1|+(n-2)|fl.-3|

nin - 1)

<-(|an_!| + |a_3|)
n

<

W 2P_
n \l(n -

+

l)/3]! [(n-3)/3]!

Now, since

in - 3) n

3 3

in - 3)' t = r?i ?
3

in
- 3)"

so

(?)
Similarly,

my
Thus,

\a\<

! > [51 I
_

3

~

3

1 2"

3[n/3]!( ;_W3]!
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This now tells us a lot. For, the solution to the problem in (5.9)

differs from

ZX + X + ^"X T^X T2~X

by at most >6 ax", where the an satisfy (5.13). Thus the error is

dominated by

^3k\v\3k <-)3k+l|v|3k+l ~)lk + 2\ v|3Ji+2

Flrn W"= ^ LnL+ [, + I
a6[n/3]! ^ fe! ka2 k! ^ *!

< (1 + 2|x| + 4|x|2) (exp(2|x|)3 - 1 - (2|x|)3)

Hence in the interval 0 < x < 1 the solution is given by the above

polynomial except for our error of at most 7e2 (which is about 52) !

The reader is forgiven if he is unimpressed with our estimate, but he

should not go so far as to discard the technique for this reason. For

the paucity of our results is due to laziness rather than the uselessness

of the Taylor development. If we pushed this procedure up to 1000

terms (an easy task for a computer), then the error would be at most

le2 . 2looo/l000! which is less than (50)"90; a good estimate indeed.

Let us recapitulate the basic ideas. We are given an initial value problem :

ym + iW*)/0 =m, yiO) = c0 , y'iO) = Cl, . . .

, y*-x>(0) = ck_,
i = 0

We replace the #'s and h by power series expansions and test the
"

solution"

f(x) = jj= 0 a x". The first k terms are found from the initial conditions,

and the rest are found by equating the coefficient of x" on both sides of the

equation. This leaves us with these problems to resolve:

(i) Can we represent the given #'s and /; by power series?

(ii) Can we differentiate a power series term by term ?

(iii) How do we multiply power series? (In the above illustration, the

g's were polynomials, so there was not much difficulty.)

(iv) Can the system of relations between the aks really be solved uniquely?

(v) Can we effectively estimate the error between the solution and a finite

part of its (supposed) Taylor expansion ?

Little by little, we will resolve these problems. Suffice it to say that the

answer to (i) in general is No (see Section 5.8). However, in problems that
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do arise naturally, the given functions usually are sums of convergent power

series. If this is the case, all other questions can be satisfactorily answered;

that is, the solution also is the sum of a convergent power series whose co

efficients can be determined by the above technique and the estimate on the

remainder can be effectively computed. Let us look at another illustration.

Examples

10.

x3y'" + x2y" + xy' + y
= ex (5.14)

y(0) = 1 y'iO) = 1 y"i0) = 1/6

Let the solution be f(x) = ^=0ax". Substituting in (5.14), we

obtain

QO OO CO CO

n(n
- l)(n - 2)anxn + n(n

- l)ax" + naxn + anx"

CO y"

= -

t-0!

n=0 n = 0 n=0 =0

which gives these equations for the coefficients :

ain(n
- l)(n

- 2) + n(n
- 1) + 1) = for all n

or

a. =
"

n!(n3-2n2-n + l)
(5.15)

Notice, that we have not used the initial conditions and fortunately

they conform to the requirements (5.15). That is, for this particular

equation, there is a unique solution independent of any initial con

ditions. This does not contradict any previous results because

Picard's theorems do not apply (since the leading coefficient is not

invertible).

11.

y
_ xy' + 2y = 0 (5-16)

yiO) = 1 y'iO) = 0
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Here Picard's theorem does apply, so we should get a unique solution

with the given initial conditions. Let/(x) = "=0 ax" be the candi

date. (5.16) becomes

nin - l)flx"-2 -

nanxn + 2ax" = 0

n=0 n=0 n=0

or

a0
= 1 fli

= 0

(n + 2)(n+l)an+2-nan + 2an = 0 n>0

or

(n - 2)a
fl"+2

(n + 2)(n+l)

Thus a2
= 1, a3

= 0, aA
= 0 and thus all further coefficients are

zero. The solution is/(x) = 1 x2.

In the next section, we shall fully develop the theory of power series. It

is most advantageous (as we have already seen) to do so in the complex
domain.

EXERCISES

6. Find an approximate solution for

y" -xy = 0 y(0) = 0 y'(0) = 1

with an error of at most 10"* in the interval [ 1, 1].

7. Do the same for

y-x2y = \ y(0)=0 /(0)=0 /'(0)=0

with an error of \0~* in [i, J].

8. Find a recursive formula for the coefficients of the solution, and a

reasonable estimate:

(a) /'
- 2/ + v = 0, v(0) = 1

, /(0) = 0.

(b) y"
-

2/ + xy
= e\ y(0) = 1

, /(0) = 1 .

(c) y(k) + v = 1, arbitrary initial conditions.

(d) /'-/c2v=0.

(e) / = x2 + xy, y(0) = 0.
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PROBLEMS

12. Why doesn't Picard's theorem apply to Equation (5.14)?
13. The second-order equation xy" + y'=0 seems to have only one

solution by the series method, but two independent solutions by the method
of separation of variables. Explain that.

5.5 Power Series

We have already discussed at length the power series expansion of the

exponential and trigonometric functions, the geometric series and some others.

We have also seen that the Taylor formula produces a power series expansion
for suitable functions. We have observed that there is a certain disk corre

sponding to each power series, called the disk of convergence. The series

converges inside that disk and diverges outside. We shall recollect all this

information as the starting point of our discussion of complex power series.

Theorem 5.6. Let cn be a sequence of complex numbers. There is a non-

negative number R (called the radius of convergence of the power series c z")

with these properties:

(a) nM= 0 cn z" diverges if\z\>R.

(b) "=0 cz" converges absolutely and uniformly in any disk {zeC:

\z\ < r) with r<R.

R has these two descriptions:

(i) R = l.u.b. {t: \c\t" is bounded}.

(ii) P = (limsup(|c|)1/")"1.

Proof. For at least part of the proofwe could refer to Proposition 9. As in that

proposition we consider the set

[t > 0 : there is an M such that M > |c 1 1
"

for all n)

If this set is unbounded, we can take R = <x>, otherwise, let R be the least upper

bound of this set.

(a) Suppose \z\ >R. Then there is a t, \z\>t>R such that {\c\t"} is un

bounded. Since |c| |z"| > |c| t" for all n, we cannot have lim cz" =0sojrz"

diverges.

(b) Let r<R, A = (ze C:\z\ <r). Then there is a t,r<t<R such that
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{|c|/"} is bounded, say by M. If \z\ < r,

\cz"\ = \c\t"

'
r

'

t

Thus, letting || || be the uniform norm for C(A), we have ||cz"|| < M(r/t)". Since

rjt < 1, 2 (r/t)" < , so by comparison 2 c z" converges absolutely and uniformly

in C(A).~
Further, by definition, R is given by (i); the more esoteric formulation (ii) we

shall leave as Problem 14.

Examples

12. If cnz" is a given power series with radius of convergence

R, the question may arise: what happens on the circle \z\ = P? The

answer is that practically anything can happen.

(a) If the sequence {c} is summable, that is, \c\ < oo, then by

comparison 2 cz" converges uniformly in {\z\ < 1}. Thus the series

2 (z"/n2) has radius of convergence 1 and converges uniformly in

{|z|<l}.

(b) (z"/n) also has radius of convergence 1, but 2 (l"/w) does

not converge, whereas [( 1)"/"] does converge.

(c) z" has radius of convergence 1
,
but 21 z" does not converge

for any z with \z\ = 1 at all (lim z" # 0 if \z\ = 1 !).

Since no general assertion on the circle of convergence is possible,
we needn't be concerned with the behavior of the series there (except
in particular cases).

13. The geometric series =0 z" is a power series with radius of

convergence 1. This series converges to (1 z)_1 uniformly and

absolutely on any disk {z e C: \z\ < r} with r < 1. Thus

y~ = z" for \z\ < 1
1 - z f0

Now let a e C, a ^ 0. Then

1
_

1 1 1 lz\" z"

a~^~z
=

a

'

[1 - (z/a)]
=

ah \a~)
=

io^

This convergence is assured in the disk {z 6 C: |z| < |a|}.

14. The series =0 (z"/0 has infinite radius of convergence.
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Thus the sum is a continuous function on the whole plane, denoted
ez since this sum does converge to the exponential function for real

values of z. We have seen that, for real x, eix = cos x + i sin x. We

can use this (or Taylor's theorem) to obtain series for the sine and

cosine:

, (ix)n
cos x + i sin x = >

= o n!

^; x

i

k%(4k)l (4k + 1)! (4/c + 2)! (4k + 3)!

=

(-l^x2" (-l)fcx2t+1
~

4^o (2k)!
+

lio (2k + 1)!

These series also converge on the entire plane. We can use them to

define the complex cosine and sine :

co -2k oo z2k+1

""-R-tm to-(-*c2FM)i (5-17)

We also have the equation

elz = cosz + i sinz (5.18)

for all complex numbers z (for the series will sum again that way).

15. Replacing z by iz and iz, alternately, we obtain these other

interesting equations :

ez = cos( iz) + i sin( iz) = cos(i'z) i sin(z'z)

e~z cos(j'z) + i sin(z'z)

Thus

ez + e"

2~

ez -e~

= cos(iz) (5.19)

= -isin(iz) (5.20)

For real values of z, the left-hand sides of Equations (5.19), (5.20) are
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the hyperbolic cosine and hyperbolic sine, respectively. We can use

these expressions to define the complex cosh and sinh :

ez + e~z
.

,
ez-e~z

cosh z = sinh z =

Because of (5.19) and (5.20), the complex trigonometric functions are,

on the imaginary axis, the hyperbolic functions :

cosh z = cos(zz) sinh z = -i sin(z'z) (5.21)

We should also note that the trigonometric identities imply the hyper

bolic ones. Since cos2(/z) + sin2(/z) = 1, it follows from (5.21) that

cosh2 z sinh2 z = 1 (5-22)

(see Exercise 10).

16. "=1 (z"/!) has radius of convergence 1. So does the series

"=1nk (z"/n!), for any integer k. We shall see later that the sums of

all these series can be given by closed expressions (such as z" =

(1-z)-1).

17. A polynomial function in C is given by a power series. In

fact, writing the polynomial p(z) = "=0 anz" is the same as giving

its power series expansion. What is more interesting is that any

point in C can be chosen as the center of a power series expansion for

p. Let z0e C and write

N

KZ) = aniZ
~

Z0 + Z0)"
n
= 0

Using the binomial theorem this becomes

P(z)= (nW-z0)'zS-'' (5.23)
n
= 0 i = 0 V /

All sums being finite, we may arrange terms at will. Thus we can

rewrite (5.23) as a sum of powers of z z0 :

Kz)= ( kr"(z-z0)"
n = 0 m = n \ /

which is the desired expansion.
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More generally, any series of the form =0 c(z -

z0)" will be called a

power series expansion centered at z0 . Can we expand ez in a power series

centered at a point other than the origin? The answer is yes (cf., Problem

15), and the proof is like the one above for polynomials, but the question of

convergence intervenes after the analog of Equation (5.23) above. It is a

general fact that for any function given by a power series, we may move the

center of the expansion to any other point in the disk of convergence. The

truly courageous student should try to prove this now; it can be done. We

will give a proof later which is simple and avoids convergence problems but

requires more sophisticated information about functions defined by power

series expansions.

Addition and Multiplication ofPower Series

Suppose /, g are complex-valued functions defined by power series ex

pansions centered at a point z0 . Then we can find series expansions for the

functions /+ g and/# also. Addition is easy: if, say

f(z) = an(z
- z0Y giz) = bn(z - z0)"

then

(f+g)iz) = yj(a + b)(z-z0y

But to find the series expansion for the product requires a little more care.

Suppose that z0
= 0 (this involves no loss of generality). To say that

/(z) = 2 a z" is to say that in a certain disk A, /is the limit of the polynomials

2^=o az". Similarly, g is the limit of the polynomials ?=0 bnz". Thus,

fg is the limit of the sequence of polynomials ("=0 z")(^=0 bz"). Now,

we can multiply polynomials easily,

/ N \ I N \ N N

nz" )(lKz" = afcmz"+'"
\n = 0 / \n = 0 / n = 0 m = 0

Ifwe collect terms in this expression to form a series of powers of z we do not

get a very aesthetic expression, but if we take some terms from the next few

polynomials in the sequence we obtain a reasonable expression.

g( anbm)zk (5.24)
k=0 \n+m=k I

We could hope that fg is the limit of this sequence of polynomials. This is a

reasonable hope; for even though we have modified the original sequence
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of polynomials we have neither added nor deleted from the series represented

by that sequence. In fact, by making careful use of this fact, we can verify
that fg is the limit of (5.21).

Proposition 3. Let f(z) = =0 az", g(z) ==0 bz" and suppose r is

less than the radii of convergence of both series. Then

(0 (/+ 9)iz) = "=o ian + b)z* uniformly and absolutely in

A = {zeC: \z\ <r),

(ii) ifd)iz) = f=o(.+m=jt anbm)zk uniformly and absolutely in A.

Proof. Let pn(z) = '2}=0akzk, q(z) =^l=0bkzk. By hypothesis p-+f, q -^g

uniformly in A. Thus p + q ->/+ g, pq -+fg uniformly in A (Problem 2.55).
Since

Pn(z) + q(z) = 2 ia- + b*)z"
k=l

(i) is proven.

(ii) Let

rJLz) =
k = 0\t + J = k J

we want to show that r -+fg uniformly in A. We know that pqn ->fg so it would

seem worth our while to computepq r. But that is easy,

Pnq rn I ( 2 "'bX
k = 0\l + J = k /

t>n

Now, each term on the right is of the form aibjz'+J with i>n or j>n. Thus,

computing norms on A = {z e C: \z\ <r},

\\pnq,~ r\\<y+\\aiz'\\\{ Ijl^^llj

+(,i0iia'z'ii)r_ifin^^ii)

<tl+Mr'\(f\bj\A + (J>k')( _|+ \bj\A
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Now, we know that 2?=o \a,\r', Jj=0 \bj\ r> are finite. Let M be a number larger
than both. Given e > 0, there are

(1) iVi>0 such that 2<=-.+ i \a,\r' < e if n > Nu

(2) N2 > 0 such that 2j=+i \bj\ ri<eifn>N2,

(3) N3 > 0 such that \\pq-fg\\ <e if n>N2.

These assertions follow from the known convergence of each case. Thus, if

n > max(7V~i, N2 , Ns),

2 |a,|r' (21^1^ +21^1'-' 2 \bj

ll'-n-/^ll< llpn?n-/^ll+ II.P4,.-rJ|

< +

< + e-M+M- = (2M+ l)e

the proposition is concluded.

EXERCISES

9. Verify, in the way suggested in the text that cos2 z + sin2 z =1 is true

for all complex numbers z, and thus cosh2 z sinh2 z = 1 is always true.

10. Find a power series expansion for these functions:

(a) exp(z2) (e) e~' J" ^Z

(b) ez sin z (f) cosh z

cos z
.

(c) (g) sinhz
1 z

-dt
t

(d) f exp(Z2)<fr
Jo

11. Verify by multiplying the power series that ez+w
= ezew-

12. From the addition formula for the exponential (Exercise 11), deduce

the addition formulas for cos, sin, sinh, cosh.

PROBLEMS

14. If {c} is any bounded sequence, then the maximum number, every

neighborhood of which has infinitely many members, is denoted lim sup c .

Show that the radius of convergence of the series 2CZ" is R =

(limsupflcl)1'")-1.
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15. Expand ez in a power series about any point z0 .

16. Assuming that (1 +X2)"1'2 can be represented by a power series

centered at 0, find it. Find the power series for arc cos x.

17. Assuming that tan x can be represented by a power series centered

at 0 and using the equation tan x cos x = sin x, find the power series ex

pansion of tan x.

5.6 Complex Differentiation

An easy property of the exponential function is

lim =1 (5-25)
i-+0 z

For

n=o n\

so

e'-l
oo _n-l / oo 7n-2\

-V-1+'(^r)
Now the term in parenthesis is a convergent power series, so is continuous

at 0. Thus, writing the parenthesis as g(z) :

ez - 1
lim = 1 + lim zg(z) = 1

2->0 z z->0

From (5.25) and the properties of the exponential it follows that

exp(z0 + z) - exp(z0) .

N ,
.

ez - I

lim -^-2 - ^-^ = exp(z0) lim = exp(z0)
z-0 z z->0 z

The student of calculus will recognize the limit on the left as a difference

quotient and the entire equation as a replica of the behavior of the real ex

ponential function. It might be a good idea to consider more generally such

a process of differentiation on the complex plane. This turns out to be a
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very significant idea, because there are many beautiful and useful ways to

represent functions which are so differentiable.

Definition 3. Let/be a complex-valued function defined in a neighborhood

ofz0inC. /is differentiable at z0 if

,.
/(z)-/(zo)

lim

z-zo Z Zq

exists. In this case we write the limit as /'(z0). If/ is defined in an open

set U and differentiable at every point of U, we say that / is differentiable

on U.

The usual algebraic facts on differentiation hold true in the complex
domain.

Proposition 4.

(i) Suppose fi g are differentiable at z0 . Then so are f+g and fg with

the derivatives given by

if+g)'izo)=f'izo)+9'izo)

ifg)'izo) = f'izoMzo) +fiz0)9'iz0)

(ii) Suppose f is differentiable at z0 and /(z0) # 0. Then 1// is differ
entiable at z0 and (l/f)'(z0) = -f'(z0)/fiz0)2.

(hi) Suppose f is differentiable at z0 and g is differentiable at f(z0). Then

g of is differentiable at z0 andig f)'(z0) = g'(f(zQ))f'(z0).

Proof. These propositions are so much like the corresponding propositions in

calculus that their proofs will be left to the reader.

Examples

18. The function z is clearly differentiable, and z'(z0) = 1 for all

z0 . A constant function is differentiable with derivative zero. Since

any polynomial is obtained from z and constant functions by a suc

cession of operations as described in Proposition 4(i), all polynomials

are differentiable.

19. The function z is nowhere differentiable. For the difference

quotient (z
- z^)/(z

- z0), for zj= z0, is a point on the unit circle

and as z ranges through a neighborhood of z0 this difference quotient

takes on all values on the unit circle, so it could hardly converge.



430 5 Series of Functions

Sum of a Power Series is Infinitely Differentiable

Our introduction to this section was essentially a proof that ez is every

where differentiable. It is in fact true that the sum of a power series is

differentiable in its disk of convergence. We now verify this basic fact.

Theorem 5.7. Let /(z) = j=0 anz" have radius of convergence R. Then

f is differentiable at every point in the disk of radius R and

f'(z)= Y,nanz"-1
n=l

(5.26)

has the same radius of convergence as "=0 az".

Proof, lim sup(|a|)1/n = lim()1/n lim supGa,,!)1'" = lim sup(|a|)1/n, so the series

2 nanz"'1 has the same radius of convergence as the given series. We must show

that it represents the derivative off. Fix a z0 , \z0\<R and choose r > |z0|. The

series 2"la"l'"""1 converges absolutely, so given e>0 there is an N such that

2">n " lank""1 <e. Now consider the difference quotient defining f'(z0) :

z z0

f(z)-f(z0)= /z"-z"\

11 = 0 \ z z0 /

= fai^z"-kzoA
n=l \k=l J

If \z\ < r as well as |z0| < r, then

<2 Mj4r'-''rk-1<2 nMr'-'Ke
lt>N k = l

2aitz"-kzk0A
n>N \fc= 1 J

Similarly, |2> nanz0~ 1\<e. Thus,

< 2e + 2 \Cn
/(z)-/(z)

-

b-i

Zo

z z0

Now, by continuity, as z -> z0 the last term tends to zero. Thus, there is a 8 > 0

such that if | z z0 1 < 8, the last term is less than e. Thus, for \z\ <rand |z z0|

< 8 we have

m-fco)

Z0
-2anzo"1 <3e

which proves that the limit of the difference quotient exists and is given by (5.26).
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In particular, since /' is given by a convergent power series, it also is

differentiable, with derivative f"(z) = ( - \)az"~2, and so forth. We

thus obtain these results, which form the complex version ofTaylor's theorem

for sums of convergent power series.

Corollary 1. Let f(z) = Y^azn have radius of convergence R. Then f is

infinitely differentiable in {z: \z\ <R). Furthermore, for every k the kth

derivative, fm is given by a convergent power series,

/<(z) = n(n
-

1) (n - k + l)az"-"
n>k

Corollary 2. Let f(z) = j=0 az" be convergent in a disk about 0. The

coefficients {an} are uniquely determined by f:

/<>(0)
a =

Notice that the definition of complex derivative is a genuine generalization

of the differentiation of functions of a real variable. Thus the same corol

laries hold for functions of a real variable represented by power series :

Corollary 3. If f(x) = "=0 a(x
-

x0)" in a neighborhood of x0 ,
then f

is infinitely differentiable at x0 and

/(n)(*o)
an = :

/(x) = <n
- 1) in

- k)an(x
- x0f-k

n>k

These corollaries are easily derived from the theorem and their proofs are

left to the student. Notice that the implication of Corollary 2 is that the

coefficients of a power series representation of a function are uniquely and

directly determined by the function. In particular, a function cannot be

written as the sum of a power series in more than one way. This observa

tion allows us to easily verify the identity

cos
2
z + sin2 z = 1 (5-27)

For the function cos2 z + sin2 z is a polynomial in functions which are sums

of power series and
thus is the sum of a power series. Its coefficients can
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be computed according to Corollary 3 just by letting z take on real values.

But the right-hand side of (5.27) is the Taylor expansion of cos2 z + sin2 z,

for real z, thus it must be the Taylor expansion for all z. Hence (5.27) is

always true.

The Cauchy-Riemann Equation

It is of value to compare the notion of complex differentiation with that

of differentiation of functions defined on R2, since R2 = C. Suppose that

/ is a complex-valued function defined in a neighborhood of z0 = x0 + iy0 .

If/ is differentiable as a function of two real variables, then the differential

dfix0,y0) is defined and is a complex-valued linear function on R2. Iff
is also complex differentiable, then

ru \ r- fiz)fizo) /e /,0-.

f'(z0) = lim (5.28)
z->zo

Z Zq

exists. Let z ->-z0 along the horizontal line. Then (5.28) specializes to

ft \ i;fix>yo)-fixo>yo) Sf
f (z0) = hm = (x0 , v0) (5.29)

x-*xo X Xq OX

If we let z -+z0 along a vertical, we also have

ft \ v
fixo,y)-fixo,y0) ldf

f (z0) = hm =
T (x0 , y0) (5.30)

y-j-o Cv ~ J'o) Sy

Thus the right-hand sides of (5.29) and (5.30) are the same. In conclusion,

a complex differentiable function must satisfy (when considered as a function

of two real variables) this relation

(DM!) (5.31)

This is called the Cauchy-Riemann equation. More precisely, the Cauchy-
Riemann equations are found by writing /= u + iv and splitting into real

and imaginary parts. Let us record this important fact.

Theorem 5.8. Let f be a complex differentiable function in a domain D.

Split f into real and imaginary parts and consider f as a function of two real
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dyji
dx i dy

du dv

dx dy

du

d~y
=

dv

dx

variables (z = x + iy). Then these partial differential equations hold in D:

(5.32)

(5.33)

Proof. Equation (5.32) was observed above. Equation (5.33) follows from

(5.32) and the identities

df du .dv Bf 8u ,8v

d~x~~8~x ~dx ~d~y~~d~y
'

Hy

Notice that when /is complex differentiable, its differential is given by

dfizo , ir + is)) =
^

(z0)r +
-jt

(z0>

= f'(z0)r + if'iz0)s

= f'izo)ir + is)

Thus the differential of a complex differentiable function is a complex linear

complex-valued function.

We shall show, via the techniques of the next few chapters, that a complex

differentiable function can be written as the sum of a convergent power

series. Thus, just by virtue of the differential being complex linear, the

function has derivatives of all orders and is the sum of its power series.

PROBLEMS

18. Prove Proposition 4.

19. Prove Corollaries 1 and 2 of Theorem 5.7.

20. Show that if / is an infinitely differentiable function on an interval

( , e), and there is an M > 0 such that

|/w(x)| <M all n allx -s<x<e

then /is the sum of a power series which converges in
the unit disk.

21. Suppose /is a complex differentiable function in a domain in the

plane. Show that:

(a) if /is real-valued it is constant.

(b) if |/| is constant, then /is
constant.
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22. Write the Cauchy-Riemann equations in polar coordinates. (Hint:

Differentiate along the ray and circle through a point.)

23. Suppose/ ,...,/, are given by convergent power series in a disk A.

If F is a polynomial in k variables such that

F(Mz),...,fk(z))=0 (5.34)

for real z, then (5.34) is true for all z in A.

24. Compute the limits of these quotients as z -> 0:

cos z 1

(d) r(a)
arc tan z

z

(b)
sin hz

sin z

(c)
cos z 1

(e)
cos z

TT72

sinz tanz

(f) n=0, 1,2, 3, 4

25. Suppose / is a differentiable complex-valued function of two real

variables in a domain D. Show that/is a complex differentiable if and only

if the differential df(z0) is complex linear for all z0 e D.

26. Suppose that / is twice differentiable in D, and is complex differ

entiable. Show also that /' is complex differentiable. Supposing that

(/')' = 0, show that /is a quadratic polynomial in z.

27. If f=u+iv is complex differentiable in D and twice differentiable,

then

82u d2u d2v 82v

dx2 dy2 dx2 dy2

5.7 Differential Equations with Analytic Coefficients

A function which can be represented as the sum of a convergent power

series at a point a e C will be said to be analytic at a. We now return to the

study of linear differential equations in order to answer some of the questions

posed in Section 5.5. We can use the information in Section 5.6 to do this

and to provide the sought-for estimates. In particular, we shall verify the

following fact.
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Proposition 5. Suppose h, g0, ..., #fc_l5 gk are analytic at 0. Then the

solution of the differential equation

ym + g,yw + h(x) = 0 y(0) = a0,..., ^""(O) = ak^
i = 0

is also analytic at 0; that is, in some disk centered at 0, it is the sum of a con

vergent power series whose coefficients can be recursively calculated from the

differential equation.

We already know, from Section 5.5, how to compute the Taylor coefficients

of the solution; our business here is to show that the resulting series does in

fact converge. This, of course, involves producing the kind of estimate

required by Theorem 5.7.

Suppose then that h,g0,...,gk-i are analytic in the interval |x| < R. Then

oo oo

h(x) = 2 " x" g,(x) = 2 a* x"

n=0 n=0

and for some positive number M, \a\ <MR~", |a'| <MR'n for all ;' and n. We

shall obtain the desired estimate in terms of M, R and the initial conditions. For

simplicity, we shall do the homogeneous case only (h = 0), leaving the general case

for the reader (Problem 27). If

CO

fix) = 2 ^ X"
n = 0

is the desired solution, we have

ak-i

Co
= Oo , , ck - 1

=
. . . .

(

and the rest of the coefficients are found from these equations :

2(n-l)---(n-k)cx"-"
n = k

+ l(f "n'x") (fn(n-l)---(n- i)cx-) = 0 (5.35)
( = 0\n

= 0 / \n=l /

Surely, the reader now has a pain in his stomach similar to that of the author as

he wrote this equation. Patience, dear readerthe fun has just begun ! Equating

coefficients of xm to zero, we obtain this recursive system of equations for the
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coefficients :

m(m \) (m k)cm

or

k-l m-k

+ 2 2 aa'(m +i (k+a)) (m (/c + a))cm+,_,*+) =0
1 = 0 a = 0

1 k-l m-k

2 2 ( + '-(* + ))
m (m k) i=o a=o

(m (k + a))a'cm+i-(t+1,) (5.36)

By the restraints on i and a we have m +i (k + a)<m + k 1 k = m 1, so

the highest subscript of c on the right is m 1. Thus, given c0 ,
. . .

, ck-i we can

solve Equations (5.36) successively. We now try to find an estimate. For this

purpose assume M > 1, and let

^,P(i?-l)-1(Pt-l),^,^y/J,0<y</c-l)C = max

The last condition on C is written so as to assure that

(CM\J

\cj\<iJ fory =0,..., k-l (5.37)

We now prove this inequality for all m, by induction. Thus we use (5.36), assuming

(5.37) for all n < m:

1 k-l m-k

I Cm I <- 2 2 \'\ km+l-(k + )l
tn i=o <z=o

-/Ml =0fb^ \~r)
1 ATC"-1

"^ (/n-k+l)

Now J}=o R-' = (R-" - 1XP-1
-

I)"' = R(R
- l)-'(Rk -

\)R-". Thus

m-k+\ Mm R(Rh - 1)

m Rm R 1 (~r
by definition of C. By this estimate we see that f(x) = 2k*Lo c *" converges in the

interval {x: |x| < R(CM)''}, and in that interval is the solution to our problem.
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We might perhaps have made a better estimate by more clever substitutions ; but

our above estimates were sufficient for the results desired. In any particular case

we could usually be clever and obtain even better estimates.

Examples

20. y' + exy' + xy
= 0, y(0) = 0, /(0) = 1 .

We will find a polynomial which approximates the solution to within

10~5 on the interval [0.01, 0.01]. Let 2 cx" be the supposed solu

tion. By substituting the series we obtain

n(n
- l)cx"-2 + lt-Ml "^x""1) + cx"+1 = 0 (5.

n = 2 \n = 0 n\] \=i / = o

38)

The initial conditions give c0
= 0, q = 1. Equation (5.38) becomes

-1
cm =

-

m(m 1)

Thus

c2
= -\cx = -\

lm-2 1 \

| -(m-l-i>m-i-i + cm_3 I

c3
= \Qc2 + ct + c0) = 0

c4
= -J1ji3c3 + 2c2 + Iq + cx) = 5L

Cs
= -2Xo(4c4 + 3c3 + c2 + iq + C2) = TJo

and so forth. The question is not really what the coefficients are

(that is to be left to a machine) but how many coefficients need to

be computed. The coefficients appear to be bounded (we could in

fact show that they must be, cf. Problem 29). Let's try to prove that

|cj < K for all n by induction. We have

1
m_2 1

|cJ ^
^73T) fS 7T('"

- X ~ 0|Cm-1-il + |Cm-31

mmy
so long as m > 4. Thus we may take for K a bound for the first

four terms, that is, k = 1/2. Then the difference between the solution
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and the kth partial sum of its Taylor expansion is dominated by

|c||x|"<^|xr = i|x|kl
n>k Z >k L 1 |X|

for |x| < 1. The interval we are concerned with is |x| < 10_1 so our

bound on the error is

i.i_.l = iio
2 10" 9 18

This is less than 10"
5
if k = 6, thus (computing also c6) the solution

differs from

v lv2 -L 1 V4 J- i_V5 _

1 y6
X 2X "T 34X T JJ0A 3 60A

by at most 10-5 for all values of x in [-0.01, 0.01].

21. Suppose we needed that good an estimate in the interval

[1, 1]. It is easy to see that just knowing that the coefficients are

bounded is not good enough. We have to know that \c\ < Kr" for

some r < 1 and some K. Let's try r = \. That is, we attempt to

verify by induction that \c\ < 2~" for all n. Now, using the equation

defining {c},

1 \<
1 (my (m

~ 1 ~ K
1

K
\

|Cml S

m(m
- 1) I ik i\ 2m-i-i^2n,-3J

K 1 /m-22; \

e2 + 4 K
< 7

m z

This is less than 2~mK as soon asm> 2(e2 + 4), orm> 26. Thus

the induction step proceeds as soon as m > 26 ; we need only choose

K so that the inequality holds for all m < 26 (K = 2 will do). Thus

\cn\ < 1/2""
'
for all n. The desired solution differs in the interval

[ 1, 1] from its kth-order Taylor polynomials by

c(D"
n>k

1 1
y -

2"-1t'o2"^2''
^ lc*l ^ ~fc-i on ok-2
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This is less than 10
5
if k is 19. Thus we need to compute 19 terms

of the Taylor expansion to find the desired approximation.

22. Compute the solution of

/ + (l^y' + exy = 0 y(0) = 1 y'(0) = 0

to an accuracy of 10"
3
in the interval [ i, ].

Let f(x) ==0 cnx" be the solution. We have these equations

for the solution :

c0= 1, Ci = 0

-1

c =

n(n
- 1) \i=(n-2

n-2 J \

(n- l-i)c-i-i+ -.cn-2-i)
i=o =oi! /

(5.39)

We will show by inductions that the {c} are bounded. Suppose that

Ic.l < K for all n <m. Then

|cm <

<

1 lm-2 m-2 1 \

i.

X(-i-0K+ t,k)m(m 1) \i=o >=o '! /

K /""-
x

.
\ X |"m(m

- 1)

m(m -1)1 j
= 1 / m(m -

e

1)
+ e

K
1

2 m(m 1).
<K

as soon as w > 3. Thus we can take A" as a bound for the first four

terms. We have from (5.39) c2= -\,c3= 0, so we may take K=\.

Then the estimate of the remainder after k terms in the interval

[-i, H is

klW<^ = ^
>k n>k^ Z.

This is less than 10"
3
when k = 10, so we need 11 coefficients. We

compute

c4
=h c$ =20 c6 T20

etc.
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Up to six terms (giving at most an error of 1/64), our solution is

x^ x^ x^ 13x6

~T
+

L2
+
20+720+'"

EXERCISES

13. Find a power series expansion for the general solution in a neighbor

hood of 0 for this equation,

(1
- x2) /' - 2x/ + k(k + 1) v = 0

14. Find a power series expansion for the general solution of

yh - Ixy' + 2kv = 0

15. Find the power series for the function y =/(x) such that

(a) y + e-y = x2, v(0) = l, v'(0)=0

(b) (/)2 = v, y(0)=0

(c) (y')2=yy", y(0)=0, y'(0) = 1

(d) / + 2x^2=0

16. How many terms of the power series for the solution y do we need:

(a) for an accuracy of 10"
3
in the interval (i, ) in Exercise 3(a)?

(b) for an accuracy of 10"
5
in the interval( 10, 10) in Exercise 3(a) ?

(c) for an accuracy of 10"a in the interval (0.1, 0.1) in Exercise

3(b)?
17. For what k are the solution of Equations (5.1), (5.2) polynomials?

PROBLEMS

28. Generalizing the argument in the text prove this theorem:

Theorem. Ifh,g0, ...,gk-i are analytic in an interval (R,R) about the

origin, then any solution of the differential equation

/k> + k2Zglyi" = h
r = 0

can be expressed as the sum of a convergent power series in a neighborhood

of the origin.

29. Suppose that g, h are convergent power series in some disk (|z| < R)

with R>\. Show that the solution of the linear differential equation

y" + gy' + hy = 0 (5.40)



5.8 Infinitely Flat Functions 441

is the sum of a convergent power series with bounded coefficients.

30. If the power series g(x) = ~2,ax", h(x)=^bx" both have infinite

radius of convergence, then so does the series expansion of the solution

of (5.40).

5.8 Infinitely Flat Functions

Not all functions are susceptible to the kind of Taylor series analysis

which we have been doing. A first requirement is that the function have

derivatives of all order; even that however is insufficient. Another glance at

Theorem 5.6 will remind the reader that there is a behavior requirement on

these successive derivatives in order that the given function be the sum of its

Taylor expansion. We shall show by example that there are infinitely

differentiable functions which are not sums of power series. First, we shall

make the notion of analyticity precise.

Definition 4. Let /be a complex-valued function defined in an open set U.

Let a e U. /is analytic at a if there is a ball {z: \z
-

a\ < r} centered at a

such that /is the sum of a convergent power series in this ball. / is analytic

in U if/is analytic at every point of U.

We have deliberately stated this definition without reference to the domain

of definition of the function; it applies equally well to functions of a real or

complex variable. The only functions which we know to be analytic are

the polynomials and ez. For example, if/ is the sum of a convergent power

series at the origin, we do not yet know that we can expand / in a series of

powers of (z
- a) with a any other point in the disk of convergence. We

shall see in the next chapter that this is the case. We have already seen that

an analytic function has derivatives of all orders (is C) and now we will

produce a C function which is not analytic. The clue to this function is

given by the following fact, which follows from l'Hospital's rule.

Proposition 6. lim P(t)e~
'
= 0, for any polynomial P

t.-0O

Proof. Problem 31.

The function we have in mind (Figure 5.1) is defined by

!exp(
- -

1 x > 0

V */ (5.41)

0 x^O
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Figure 5.1

a is certainly infinitely differentiable at any point x0 # 0, so we need only
consider its behavior at 0. Now,

(7(n)(x) = 0 x < 0 all n

Thus all derivatives of a from the left exist at 0. We have to show that all

derivatives from the right exist and are zero. More precisely we must prove
that for all n,

<7<">(x) - ffM(Q)
hm = 0 (5.42)
x->0

x>0

We do this by induction. The case n = 0 is easy :

lim = lim - expl ) = lim te~' = 0

X-+0 X x->0 X \ X/ (->oo

x>0 x>0

To do the general case we must have some idea what <7(n)(x) looks like for

x > 0. Now

?(x) - - i
exp(

-

i) 'W - (J, + i) exp(
-

i)

^-yy)yi)
A pattern seems to be developing.
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For each n there is a polynomial P such that

ff(n)(x) = P(-j exp
( - ^j for x > 0 (5.43)

This can be verified by induction. Assuming (5.43), we compute

'""<yyyy(yM-i)

'p-yi)
where Pn+1(X) = -Z2(P'(Z) + Pn(X)). Now that we have this, (5.42)
follows immediately from Proposition 6 :

,. <T(n)(x) - (T(n)(0) ,.
1 /1\ / 1\

,. /N ,

lim = lim -

P
-

exp
- - = lim rP(r)*T' = 0

x->0 X x-o X \X/ \ X] f-oo

x>0 x>0

Thus a is also infinitely differentiable at 0. But it is certainly not analytic.
Its Taylor expansion is "=0 0 ' x" which converges to o(x) only for x <, 0

and provides a poor means for approximating the value of <r(x) for x > 0.

However, the fact that infinitely differentiable functions exist with this

property has its bright side. The following construction will prove to be

useful.

Lemma. Given a <b, there is a C00 function xab such that

(i) 0 < xab(x) < 1 for all x,

(ii) xah(x) > 0 ifa<x<b,

(iii) t^x) = 0 if x > b or x < a.

Proof. (See Figure 5.2.) ct(x(1 x)) has the required properties of t0i. We

then define

Toli(x) = T0(H) "((K)('-r3)
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Figure 5.2

Theorem 5.9. Let [a, b~] be a given interval and Uu .
.., Un a finite collec

tion of open intervals covering [a, b~\. There existC functions pt such that

(i) 0 < pix) < l for all xeR, all i,

(ii) Pi(x) = 0 ifx$Ut,

(iii) pt(x) = l, for all x e [a, U].

Proof. Let [/, = (at , bi), and take rt = Tib{ . Then t(x) =2 Tt(x) > 0 if

x e (a, b). Let

(ti(x)
x 6 (a, , bi)

Pix) = { <*)

0 x ^ (a, , bi)

The pi then have the desired properties.

PROBLEMS

31. Prove that for any polynomial P, lim P(t)e~' = 0.
1-.QO

32. Let a be denned by (5.31). Define

<d(x)

\\t(\-t))dt

\\t(\-t))dt
Jo

Show that (a) w is C, (b) 0 ^ o(x) < 1, for all x, (c) to(x) = 0, if x < 0,

(d)a>(x) = l,ifx>l.

33. Using Theorem 5.9 it can be shown that any continuous function is

the limit of C" functions. Let/e C([0, 1]) and e > 0. Find aC function

# such that ||/ g\\ < e.

Here's how to do it. First pick an integerN>0 such that |/(x) f(y)\
< e/2 if \x y\<ljN. Now cover the interval [0,1] by the intervals
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U0, ..., UN, where

/i-l /+1\

u'-(n- n)
and let px,...,pN be the corresponding functions of Theorem 5.9. Let

^-l/^H
For any x, x is in only two of the intervals {U,}, say UT, U,+1. Then

l/(*)-*(*)l=M*) **>-'() + Pr+1 /-,(^)
e e

<2
+
2

5.9 Summary

Let {/J be a sequence of continuous functions. The series formed from

the/k is the sequence of sums Q=1/J. If this sequence converges, we

say that the series converges and denote the limit by= t fk . The series

converges absolutely if "=1||/t|| < oo. The Cauchy criterion for series

asserts that the series converges if and only if the sums ||=ll+1 /til can be

made arbitrarily small by choosing m, n sufficiently large.

comparison test. If there is a sequence {pk} of positive numbers and an

integer N > 0 such that

(0 IIAII<P* fork>iV

() YjPk <

then /k converges absolutely.

integration. If/ converges, so does Jj/ and

j;(z/.)-i({
fundamental theorem of algebra. If P is a polynomial :

P(z) = anz', +
---

+ a1z + a0 (5.44)
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with a # 0. Then P(z) has a complex root. If r1; . . .
, rk are all the roots

of P, then corresponding to each root there is a positive integer m( (called
the multiplicity) such that

(i) mt + + mk
= n

(ii) Piz) = (z - r^"' iz - rk)m* (5.45)

To the polynomial P given by (5.44) we associate the constant coefficient

differential operator LP:

LP(f) = afM +
---

+ a1f' + a0f

P is called the characteristic polynomial of LP . These formulas are valid :

Lp+Q
= LP + Lq LPq

=

LpLq

If (5.45) is the factorization of P, then the kernel of LP ,
the collection of

solutions of LP(f) = 0, is spanned by the functions

erix xmi~1erix

r2x xm2-ler2X

-ritx mji-lgi-kjc

Let {cn} be a sequence of complex numbers. There is a nonnegative
number R (called the radius of convergence of the power series c z") with

these properties :

(a) cz" diverges for \z\ > R.

(b) cnz" converges absolutely in {|z| < /} for r < R.

(c) P=[limsup(|C|)1/"]-1.

If/(z) = anz", g(z) = YJbnzn in the disk {\z\ < r}, then

f(z) + g(z)= t(an + bn)z"
n = 0

fiz)giz)= ( abm)zk
k=0 \n+m=k 1

in that same disk.
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If/ is a complex-valued function defined near z0 in C, we say that / is

complex differentiable at z0 if

,.
fiz)-fizo)

,,,
V

hm =/(z0)
z

-

z0

exists. The sum of a convergent power series is complex differentiable at

every z0 in its disk of convergence. Furthermore, the derivative is the sum

of the derived series :

GO 00

/(z)=az" /'(z)= az"-1
n=0 n=l

Thus the sum of a convergent power series is infinitely differentiable. A

differentiable complex-valued function of two real variables is complex
differentiable if and only if it satisfies the Cauchy-Riemann equations :

f--4f)dx \dy!

If h, g0 ,
. . .

, gk can be represented as sums of convergent power series

in a disk centered at zero, then the same is true for all solutions of the differ

ential equation

ym + kZgiyw + h = o

i=0

Furthermore, once given the initial conditions

y(0) = ao,...,/k-i\0) = ak-1

the coefficients of the power series can be recursively calculated using the

differential equation.
Given any finite covering of the interval [a, b~] by open intervals Uu ...,

U we can find C00 functions pt, ..., p such that

(a) 0<p,<l

(b) pt
= 0, outside Ut

(c) Piix) = 1 for all x e [a, U]

These functions are called a partition of unity on [a, 6] subordinate to the

cover Uu ..., U.
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MISCELLANEOUS PROBLEMS

34. Find a sequence {/} of continuous nonnegative real-valued functions

defined on the interval (0,1) such that f(x) =2=i /(*) exists for all

x e [0, 1], but /is not continuous.

35. For |z| < 1, define

oo 7k

lnz=2r
k=l k

Show that for all such z, z
= 1 exp(ln(l z)).

36. Show that the series

i(z-n)2

converges to a complex differentiable function in the domain

C-{1,2, ...,, ...}.

37. Show that exp(z) = lim (1 + z/m)m. (Hint: Compute the power
m-^oo

series expansion of (1 + zjm)m.)
38. Show that a real polynomial of odd degree always has a real root.

39. Let oj = exp(277f'//j). Show that

1 - z" = (1 - ojz)(\ - a>2z)(!- wnz)
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40. Let P be a polynomial. Show that P is the square of another poly
nomial if and only if every root of P occurs with even multiplicity.

41 . If P, Q are two polynomials, P divides Q if and only if every root of
P is a root of Q with no larger multiplicity.

42. Suppose P is a polynomial of degree at least two. Show that there

is a c such that P(z) -

c = 0 has at least one multiple root. (Hint: Con

sider P' as defined in Problem 10. If P'(d) = 0, take c = P(a).)
43. Let /i, . . .

, / be functions in C(X). Show that these functions are

independent if and only if there are points x,,...,x such that the matrix

(f(xj)) is nonsingular.

44. Show that the functions e'x, xe", .
.., x"e'x are independent.

45. Show that if P, Q are polynomials, S(LP) c S(LQ) if and only if P

divides Q.

46. If P is a polynomial of degree at least two, there is a c e C such that

the equation LPf= c/has a solution of the form xe'x.

47. If a linear differential equation has polynomial coefficients, it has

global solutions on all of R.

48. Let {c} be a sequence of complex numbers such that 2 knl < o.

Let f(z) =2=o cz". Prove that |c0| is not a relative maximum of |/|,
unless all other coefficients vanish.

49. Suppose the function

f(x, y) = x2 -

y2 + iv(x, y)

is complex differentiable. Find v.

50. If / is a polynomial in x, y which is complex differentiable, then

/(x, v) has the form Q(x + iy), where Q is a polynomial. (Hint: Substi

tute x = (z + z)/2, y = (z z)/2, and use the Cauchy-Riemann equation.)

51. Suppose /is a C2 complex-valued function defined on a domain D

in C. Show that if / and fz are both harmonic, then / is complex differ

entiable.

52. If/ g are complex differentiable and |/|2 + \g\2 is constant, then both

/, g are constant.

53. Suppose that / is a one-to-one mapping of a domain D <= C onto

A <= C. Let g : A -*- Z> be the inverse of /. Show that if / is complex

differentiable, so is g.

54. We may consider the function ez as a mapping from the plane to

the plane. Let z = x + iy, u = Re ez, v = \mez; that is

u = e" cos y v = e* sin y

(a) Show that this mapping maps the lines x
= const, on the circles

centered at the origin, the lines y = const, go onto the rays through the

origin.

(b) Show that in any interval {a < y < a + 2-n-} this mapping takes

every value precisely once.
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(c) In particular, ez maps the horizontal strip { tt <y < it) one-to-

one onto the entire plane except for the negative real axis. Call this

domain D. Define the complex logarithm log z: Z) -{ tt <y <tt} as

the inverse of this mapping. Show that log z is complex differentiable

and

(log)' z =
-

z

Show also that log z can be represented by a power series centered at 1

in the disk {|z 1| < 1}. (Recall Miscellaneous Problem 35.) Notice

that this provides a way for extending real functions to the complex
domain besides that of power series. For example, the power series

expansion about 1 of log x extends it only to the unit disk centered at 1 .

The above extension of log is defined in the entire plane except the

negative real axis. This process is called analytic continuation.

55. Consider z2 as a mapping of the plane into the plane. Show that it

maps the open right half plane one-to-one onto the domain D of Problem 54.

LetV z be the inverse, and show thatVz is complex differentiable. Provide

a similar discussion for the mapping z".

56. Discuss the mapping properties of cos z, sin z.

57. Show that the power series expansion of the solution of Exercise 8(d)
with initial values y(0) = 1, y'(0) = 0 does not converge outside the unit disk.

58. Suppose that/ g are complex-valued functions defined on the interval

I. Show that

f /(r)
j
dt

hz-g(t)

is complex differentiable and can be represented by a power series at any

point of the image of g.

59. If /is C'inCx Xand for each fixed x,f(z, x) is differentiable in z,

then

F(t)=jf(z,x)dx

is also complex differentiable.

60. The equation of Exercise 6 is called Legendre's equation and the

solutions {/*} for integral k are called the Legendre polynomials. They have

this interesting property:

fm(x)f(x) dx = 0 if m # n
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To prove this we must observe that Legendre's equation may be written as

((l-x2)/)' + k(k+l)v = 0

Thus

\\ f-f- = ^TT) /. i [(1 ~

*'>/<*>]'/<*> dx

by integration by parts. Now do the same, interchanging m and n.

61. Let P be a polynomial of degree d. Show that /(z) = ep(2' is complex

differentiable. Show that/(n)(z)e"',<z) is a polynomial of degree n(d 1).

62. Show that the polynomial

d"

exp(x2) (exp(-x2))

solves the differential equation y" 2/ + 2ny 0.

63. (a) Find a C real-valued function / defined on R" with these

properties :

(i) 0</(x)<l

(ii) f(x)>0if \\x-x0\\<R

(iii) /(x)=0if ||x-Xo!l>P

(By C" we mean all higher-order partial derivatives exist and are con

tinuous.)

(b) Let A' be a closed set in R", and suppose Bt, . . .
, B are balls in

R" such that X <= Bi u u B . A partition ofunity on X subordinate to

Bi, . . .
, B is a collection {/,...,/} of C" functions such that

(i)0</<l

(ii) /,(x) = 0 if x $ Bi

(iii) 2;=i/< = lif*e*

Find such a partition of unity.
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